

Insect survey investigation

Science Inquiry

Content description: South Australian Scope and sequence

YEAR 6

Questioning and predicting

· Pose investigable questions to identify patterns and test relationships and make reasoned predictions.

Planning and conducting

- Plan and conduct repeatable investigations to answer questions, including, as appropriate, deciding the
 variables to be changed, measured and controlled in fair tests; describing potential risks; planning for
 the safe use of equipment and materials; and identifying required permissions to conduct investigations
 on Country/Place.
- Use equipment to observe, measure and record data with reasonable precision, using digital tools as appropriate

Processing, modelling and analysing

• Construct and use appropriate representations, including tables, graphs and visual or physical models, to organise and process data and information and describe patterns, trends and relationships.

Evaluating

• Compare methods and findings with those of others, recognise possible sources of error, pose questions for further investigation, and select evidence to draw reasoned conclusions.

Communicating

 Write and create texts to communicate ideas and findings for specific purposes and audiences, including selection of language features, using digital tools as appropriate.

TASK DESCRIPTION

The class will collaborate to design a scientific investigation into insect biodiversity in different habitats. Individual groups will set up and monitor traps at different sites then combine recorded data for analysis.

Identify different habitats on and near to the school site such as kitchen gardens, lawns, ornamental gardens and natural vegetation.

Support students to develop a secondary focus for the insect surveys; for example predator/prey relationships, beneficial and pest species.

Students will practise using the scientific report format, following the checklist as a guide. This can be done individually or collaboratively. They will also be assessed on their practical skills while working together.

INVERTEBRATE IDENTIFICATION RESOURCE:

ento.csiro.au/education/key/couplet_01.html

Sticky traps can be purchased online, or alternatively, pitfall traps can be utilized.

Schools must ensure a risk assessment is completed which addresses risk of anaphylaxis for bees and other stingers, and ensures appropriate PPE is provided.

Disclaimer: This curriculum resource is designed to support schools in delivering quality food and fibre content to students. It has been developed by Lead Ag Teacher Sue Pratt, AgCommunicators – a registered teacher with more than 30 years' experience in teaching agriculture and science. Prior to using this resource, teachers should conduct a risk assessment in line with their site's curriculum and safety guidelines and check all links are appropriate to the school's online policies. The risk assessment may include provision of specialised Personal Protective Equipment and review of the school's policies and procedures on chemical use.

Insect survey investigation

Farmers regularly check their crops for insects and need to understand which ones are beneficial and which ones are pests. This is important for both broadacre crops like wheat and barley as well as horticultural crops like oranges and almonds. They use scientific methods to record data and use it for decision making on their farm.

Researchers also use scientific methods to understand insects so that they can provide useful advice to farmers. They also need to use scientific methods to check that their recommendations are reliable.

CHECKLIST FOR SCIENTIFIC REPORT WRITING

Report style (Communication)	Analysis
formal style, no personal pronouns	data is used to provide a scientific explanation
technical language used	differences between sites compared
headings used, organised structure	and discussed
accurate spelling	hypothesis supported or not
Introduction	Evaluation
aim stated "to investigate"	identifies strengths of investigation
hypothesis stated clearly "if then because"	identifies weaknesses
independent variable	identifies sources of uncertainty
dependent variable	suggest improvements
controlled variables identified (what makes it a fair test?)	Conclusion conclusion that summarises findings
materials list	link to practical use of insect data
safety guidelines	eg farmers managing pests & beneficials
procedure – past tense, numbered steps	Practical Skills
Results	attempts all tasks required
invertebrate frequency data in a labelled table	reliable
invertebrates identified clearly	works safely with others
pests & beneficials differentiated	cleans up thoroughly
frequency data on an accurate graph	shows initiative
graph has title, axis labels, units, accurate scale	
summary statement of results (no explanation)	

